7441 measured reflections

 $R_{\rm int} = 0.032$

2620 independent reflections

1807 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Benzoyl)[2-(cyanoimino)-1,3thiazolidin-2-yl]methyl acetate

Hong Dai, Xin Zhang, Jian-Bing Liu, Hai-Bo Yu and Jian-Xin Fang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianiin 300071, People's Republic of China Correspondence e-mail: daihong_2001@yahoo.com.cn

Received 18 September 2007; accepted 27 September 2007

Key indicators: single-crystal X-ray study: T = 294 K: mean σ (C–C) = 0.004 Å: R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 13.7.

The title compound, C₁₄H₁₃N₃O₃S, has been synthesized as a potent fungicidal agent. The 1,3-thiazolidine ring is approximately planar and makes a dihedral angle of 84.9 $(2)^{\circ}$ with the phenyl ring. There are weak intramolecular $C-H\cdots O$ and C-H···N hydrogen bonds, which stabilize the molecular structure.

Related literature

For related literature, see: Brackmann et al. (2005); Ezer et al. (1984); Ford & Casida (2006); Liu et al. (2006); Mota-Sanchez et al. (2006); Ogawa et al. (1992); Schmuck (2001); Shiokawa et al. (1990); Yoneda et al. (2001); Zhang et al. (2000).

Experimental

Crystal data

C14H13N3O3S $M_r = 303.33$ Monoclinic, $P2_1/n$ a = 8.4679 (19) Åb = 8.713 (2) Å c = 20.147 (5) Å $\beta = 91.565 \ (4)^{\circ}$

V = 1486.0 (6) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.23 \text{ mm}^{-1}$
T = 294 (2) K
$0.22 \times 0.18 \times 0.12$ mm

Data collection

Bruker SMART 1000

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.951, T_{\max} = 0.963$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	191 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
2620 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C8-H8···O3	0.98	2.22	2.649 (4)	105
$C8 - H8 \cdot \cdot \cdot N2$	0.98	2.38	2.796 (3)	105

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant Nos. 29872022 and 20172030) and the Key Project of the Chinese Ministry of Education (grant No. 105046).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2211).

References

- Brackmann, F., Yufit, D. S., Howard, J. A. K., Es-Sayed, M. & De Meijere, A. (2005). Eur. J. Org. Chem. 3, 600-609.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ezer, E., Harsanyi, K., Domany, G., Szporny, L., Matuz, J., Hegedues, B., Pallagi, K., Szabadkai, I. & Tetenyi, P. (1984). Ger. Patent 3 409 801.
- Ford, K. A. & Casida, J. E. (2006). Chem. Res. Toxicol. 19, 944-951.
- Liu, J. B., Li, L. C., Dai, H., Liu, Z. & Fang, J. X. (2006). J. Organomet. Chem. **691**, 2686–2690.
- Mota-Sanchez, D., Hollingworth, R. M., Grafius, E. J. & Moyer, D. D. (2006). Pest Manag. Sci. 62, 30-37.
- Ogawa, T., Ota, T., Taguchi, M., Yoshimura, M. & Hatayama, K. (1992). WO Patent 9 217 462.
- Schmuck, R. (2001). Pflanzenschutz-Nachr. Bayer, 54, 161-184.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shiokawa, Y., Takimoto, K., Takenaka, K. & Kato, T. (1990). Eur. Patent 389 861
- Yoneda, F., Muraoka, S., Oide, H., Watabe, M., Urabe, K. & Takeuchi, I. (2001). Jpn. Patent 2001 199 888.
- Zhang, A., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294-1303.

supplementary materials

Acta Cryst. (2007). E63, o4211 [doi:10.1107/S1600536807047472]

(Benzoyl)[2-(cyanoimino)-1,3-thiazolidin-2-yl]methyl acetate

H. Dai, X. Zhang, J.-B. Liu, H.-B. Yu and J.-X. Fang

Comment

Recently, compounds containing 2-cyanoimino-thiazolidine group have attracted much interest because they exhibit diverse biological activities, such as antiulcer, vasodilator, antihypertensive and insecticidal activities (Ezer *et al.*, 1984; Shiokawa *et al.*, 1990; Ogawa *et al.*, 1992; Zhang *et al.*, 2000). They are widely applied in the fields of medication and plant protection (Yoneda *et al.*, 2001; Schmuck, 2001; Ford & Casida, 2006). For example, the chloronicotinyl insecticide Thiacloprid has high insecticidal activity with a favorable ecobiological profile and safety to bees, it is very useful in horticulture as well as in modern crop protection systems (Brackmann *et al.*, 2005; Mota-Sanchez *et al.*, 2006). In a search for more biologically active 2-cyanoimino-thiazolidine derivatives, the title compound was synthesized and its crystal structure was determined (Fig. 1). The molecule is non-planar, the benzene ring and the 1,3-thiazolidine ring making a dihedral of 84.9 (2) $^{\circ}$.

Experimental

[3-(2-Oxo-2-phenylethyl)thiazolidin-2-ylideneamino]formonitrile (Liu *et al.*, 2006; 5 mmol) was dissolved in acetic acid (20 ml), and sodium acetate (6 mmol) was added. Then bromine (6 mmol) was dropwise added with stirring at 343 K, the reaction was maintained for about 3 h, until the mixture was turned into light yellow. Then water (50 ml) and chloroform (40 ml) were added. The organic layer was washed with saturated brine (3×30 ml), the combined organic layer was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was separated by column chromatography on silica gel, with petroleum ether/ethyl acetate (2:1 v/v) as eluent, and recrystallized from ethyl acetate to give a colorless crystal (yield 65%).

Refinement

H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

(Benzoyl)[2-(cyanoimino)-1,3-thiazolidin-2-yl]methyl acetate

Crystal data C₁₄H₁₃N₃O₃S

 $F_{000} = 632$

$M_r = 303.33$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.4679 (19) Å
<i>b</i> = 8.713 (2) Å
c = 20.147 (5) Å
$\beta = 91.565 \ (4)^{\circ}$
V = 1486.0 (6) Å ³
Z = 4

Da

Data collection	
Bruker SMART 1000 diffractometer	2620 independent reflections
Radiation source: fine-focus sealed tube	1807 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 10$
$T_{\min} = 0.951, T_{\max} = 0.963$	$k = -10 \rightarrow 10$
7441 measured reflections	$l = -23 \rightarrow 20$

 $D_{\rm x} = 1.356 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 25.4^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 294 (2) K Monoclinic, colorless $0.22\times0.18\times0.12~mm$

Cell parameters from 2292 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.8973P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
2620 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
191 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

S1 0.48762 (9) 0.77682 (9) 0.05323 (4) 0.0621 (3) 01 0.0277 (2) 1.0382 (2) 0.23069 (9) 0.0649 (6) 03 0.0994 (4) 1.2840 (3) 0.0541 (12) 0.1099 (10) N1 0.2669 (2) 0.9170 (3) -0.00064 (10) 0.0523 (6) N3 0.3142 (4) 0.8453 (4) -0.11270 (13) 0.0653 (10) C1 -0.0287 0.8022 0.6690 0.654* C2 -0.1267 (3) 0.5623 0.0553 0.665* C3 -0.1277 (3) 0.5529 (3) 0.15584 (15) 0.0590 (7) H3 -0.2163 0.4283 0.1515 0.071* C4 -0.1537 (3) 0.5914 (3) 0.2176 (14) 0.0558 (7) H4 -0.1669 0.5388 0.2550 0.067* C5 -0.0863 (3) 0.7355 (3) 0.12343 (12) 0.0411 (6) H5 -0.0732 0.766 0.22468 (12) 0.0476 (6) H5 -0.0732 0.7765 0.2667 0.057* C6 -0.0370 (3) 0.8143 (3) 0.1618 (11) <t< th=""><th></th><th>x</th><th>У</th><th></th><th>Z</th><th></th><th>Uiso*</th><th>U_{eq}</th><th></th></t<>		x	У		Z		Uiso*	U_{eq}	
010.0277 (2)1.0382 (2)0.23069 (9)0.0649 (6)030.0994 (4)1.2840 (3)0.05419 (12)0.1099 (10)N10.2699 (2)0.9246 (2)0.11271 (9)0.0397 (5)N20.2266 (3)0.9170 (3)-0.00064 (10)0.0523 (6)N30.3142 (4)0.8453 (4)-0.11270 (13)0.0953 (10)C1-0.0593 (3)0.7490 (3)0.10658 (12)0.0450 (6)H1-0.02870.80220.06900.054*C2-0.1267 (3)0.6056 (3)0.10017 (14)0.0545 (7)H2-0.14130.56230.05830.065*C3-0.01630.42830.15150.0701*H3-0.21630.42830.15150.071*C4-0.1537 (3)0.5914 (3)0.21766 (14)0.0558 (7)H4-0.18690.53880.25500.067*C5-0.0686 (3)0.1795 (11)0.0408 (6)C80.0381 (3)0.9666 (3)0.1794 (11)0.0438 (6)C80.1404 (3)1.0279 (3)0.12343 (12)0.0411 (6)H80.07631.03920.08250.049*C90.1813 (3)1.2918 (3)0.10231 (18)0.0537 (7)C100.2675 (4)1.4304 (3)0.12631 (18)0.0537 (7)C110.3752 (3)0.8805 (4)0.1676 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.808*H11B0.4108 </td <td>S1</td> <td>0.48762 (9)</td> <td>0.77682 (9)</td> <td>)</td> <td>0.05323</td> <td>(4)</td> <td>0.062</td> <td>1 (3)</td> <td></td>	S1	0.48762 (9)	0.77682 (9))	0.05323	(4)	0.062	1 (3)	
030.0994 (4)1.2840 (3)0.05419 (12)0.1099 (10)N10.2699 (2)0.9246 (2)0.11271 (9)0.0377 (5)N20.2269 (3)0.9170 (3)-0.00064 (10)0.0523 (6)N30.3142 (4)0.8453 (4)-0.11270 (13)0.0963 (10)C1-0.0593 (3)0.7490 (3)0.10658 (12)0.0450 (6)H1-0.02870.80220.06900.054*C2-0.1267 (3)0.6056 (3)0.1017 (14)0.0545 (7)H2-0.14130.56230.05830.065*C3-0.1727 (3)0.5259 (3)0.15584 (15)0.0590 (7)H3-0.21630.42830.15150.071*C4-0.1537 (3)0.5914 (3)0.2166 (14)0.0558 (7)H4-0.16690.53880.25500.067*C5-0.0863 (3)0.7335 (3)0.22468 (12)0.0476 (6)H5-0.07320.77650.26670.57*C6-0.0370 (3)0.8143 (3)0.16918 (11)0.0383 (6)C70.0381 (3)0.9666 (3)0.17954 (11)0.0408 (6)C80.1404 (3)1.0279 (3)0.12343 (12)0.411 (6)H80.07631.1730 (2)0.14353 (9)0.0576 (5)C90.1813 (3)1.2918 (3)0.12641160H10A0.24241.51550.09760.126*H10B0.37941.41140.12620.126*H10A0.31940.81530.19170.808*C110.3752	01	0.0277 (2)	1.0382 (2)		0.23069	(9)	0.064	9 (6)	
N1 0.2699 (2) 0.9246 (2) 0.11271 (9) 0.0397 (5) N2 0.2269 (3) 0.9170 (3) -0.00064 (10) 0.0523 (6) N3 0.3142 (4) 0.8453 (4) -0.11270 (13) 0.0963 (10) C1 -0.0593 (3) 0.7490 (3) 0.10658 (12) 0.0450 (6) H1 -0.0287 0.8022 0.0690 0.054* C2 -0.1267 (3) 0.5259 (3) 0.15584 (15) 0.057* C3 -0.1727 (3) 0.5259 (3) 0.15584 (15) 0.071* C4 -0.1869 0.5388 0.2550 0.067* C5 -0.0863 (3) 0.7335 (3) 0.22468 (12) 0.0476 (6) H5 -0.0732 0.7765 0.2667 0.057* C6 -0.0370 (3) 0.8143 (3) 0.16918 (11) 0.0383 (6) C7 0.0381 (3) 0.9566 (3) 0.17954 (11) 0.0408 (6) C8 0.1404 (3) 1.0279 (3) 0.12343 (12) 0.0411 (6) H8 0.0763 1.392 0.825 0.049* C2 0.2367 (1 1.4304 (3) 0.12631 (18) <td>03</td> <td>0.0994 (4)</td> <td>1.2840 (3)</td> <td></td> <td>0.05419</td> <td>(12)</td> <td>0.109</td> <td>9 (10)</td> <td></td>	03	0.0994 (4)	1.2840 (3)		0.05419	(12)	0.109	9 (10)	
N20.2269 (3)0.9170 (3)-0.00064 (10)0.0523 (6)N30.3142 (4)0.8453 (4)-0.11270 (13)0.0963 (10)C1-0.0593 (3)0.7490 (3)0.10658 (12)0.0450 (6)H1-0.02870.80220.06900.054*C2-0.1267 (3)0.6056 (3)0.10017 (14)0.0545 (7)H2-0.14130.5259 (3)0.15584 (15)0.0590 (7)H3-0.21630.42830.15150.0071*C4-0.1537 (3)0.5914 (3)0.21766 (14)0.0558 (7)H4-0.18690.53880.25500.067*C5-0.0863 (3)0.7335 (3)0.22468 (12)0.0476 (6)H5-0.07320.77650.26670.057*C6-0.0370 (3)0.8143 (3)0.16918 (11)0.0383 (6)C70.0381 (3)0.9666 (3)0.17954 (11)0.0408 (6)C80.1404 (3)1.0279 (3)0.12345 (12)0.0411 (6)H80.07631.03920.08250.049*C20.2034 (2)1.1730 (2)0.14353 (9)0.0576 (5)C90.1813 (3)1.2918 (3)0.10238 (14)0.0537 (7)C100.2675 (4)1.3404 (3)0.12631 (18)0.088 (10)H10A0.21241.51550.09760.126*H10B0.31940.81530.19830.080*H11A0.31940.81530.19830.080*H11A0.31940.81530.1976 (13)0.0666 (9)H11A <td>N1</td> <td>0.2699 (2)</td> <td>0.9246 (2)</td> <td></td> <td>0.11271</td> <td>(9)</td> <td>0.039</td> <td>7 (5)</td> <td></td>	N1	0.2699 (2)	0.9246 (2)		0.11271	(9)	0.039	7 (5)	
N30.3142 (4)0.8453 (4)-0.11270 (13)0.0963 (10)C1-0.0593 (3)0.7490 (3)0.10658 (12)0.0450 (6)H1-0.02870.80220.06900.054*C2-0.1267 (3)0.5625 (3)0.1017 (14)0.0545 (7)H2-0.14130.56230.05830.065*C3-0.1727 (3)0.5259 (3)0.15584 (15)0.0590 (7)H3-0.21630.42830.15150.071*C4-0.1537 (3)0.514 (3)0.21766 (14)0.0558 (7)H4-0.18690.53880.25500.067*C5-0.0863 (3)0.7353 (3)0.22468 (12)0.0476 (6)H5-0.07320.77650.26670.057*C6-0.0370 (3)0.8143 (3)0.16918 (11)0.0383 (6)C70.0381 (3)0.9666 (3)0.17954 (11)0.0408 (6)C80.1404 (3)1.0279 (3)0.12343 (12)0.0411 (6)H80.07631.03920.08250.09*O20.2034 (2)1.1730 (2)0.14353 (9)0.0537 (7)C100.2675 (4)1.4304 (3)0.12631 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.3103 (3)0.8980 (4)0.16776 (13)0.0665 (9)H11A0.3193 (3)0.9969 (4)0.1416 (14)0.631 (8)H12A0.52170.69640.16210.076*H11B0.41080.97130.19170.080*C120.51	N2	0.2269 (3)	0.9170 (3)		-0.0006	4 (10)	0.052	3 (6)	
C1 $-0.0593 (3)$ $0.7490 (3)$ $0.10658 (12)$ $0.0450 (6)$ H1 -0.0287 0.8022 0.0690 0.054^* C2 $-0.1267 (3)$ $0.6056 (3)$ $0.10017 (14)$ $0.0545 (7)$ H2 -0.1413 0.523 0.0583 0.065^* C3 $-0.1727 (3)$ $0.5259 (3)$ $0.15584 (15)$ $0.0590 (7)$ H3 -0.2163 0.4283 0.1515 0.071^* C4 $-0.1537 (3)$ $0.5914 (3)$ $0.21766 (14)$ $0.0558 (7)$ H4 -0.1869 0.5388 0.22550 0.067^* C5 $-0.0863 (3)$ $0.7335 (3)$ $0.22468 (12)$ $0.0476 (6)$ H5 -0.0732 0.7765 0.2667 0.057^* C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.299 (3)$ $0.12343 (12)$ $0.0411 (6)$ H8 0.0763 1.0392 0.0825 0.049^* C2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.0576 (5)$	N3	0.3142 (4)	0.8453 (4)		-0.1127	0 (13)	0.096	3 (10)	
H1 -0.0287 0.8022 0.0690 0.054^* C2 $-0.1267 (3)$ $0.6056 (3)$ $0.10017 (14)$ $0.0545 (7)$ H2 -0.1413 0.5623 0.0583 $0.069*$ C3 $-0.1727 (3)$ $0.5259 (3)$ $0.15584 (15)$ $0.0590 (7)$ H3 -0.2163 0.4283 0.1515 0.071^* C4 $-0.1537 (3)$ $0.5914 (3)$ $0.21766 (14)$ $0.0558 (7)$ H4 -0.1869 0.5388 0.2550 0.667^* C5 $-0.0863 (3)$ $0.7355 (3)$ $0.22468 (12)$ $0.0476 (6)$ H5 -0.0732 0.7765 0.2667 0.057^* C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.9666 (3)$ $0.17954 (11)$ $0.4048 (6)$ C8 $0.1404 (3)$ $1.0279 (3)$ $0.12343 (12)$ $0.411 (6)$ H8 0.0763 1.0392 0.825 0.049^* O2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.0573 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.1223 (14)$ $0.537 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.1223 (14)$ $0.683 (10)$ H10A 0.3791 1.4114 0.1262 0.126^* H10B 0.3791 1.4541 0.1707 0.126^* C11 $0.3752 (3)$ $0.8805 (4)$ $0.16776 (13)$ $0.6665 (9)$ H11A 0.3194 0.8153 0.1983 0.080^* H22B 0.6096 0.8532 $0.$	C1	-0.0593 (3)	0.7490 (3)		0.10658	(12)	0.045	0 (6)	
C2 -0.1267 (3) 0.6056 (3) 0.10017 (14) 0.0545 (7) H2 -0.1413 0.5623 0.0583 0.065* C3 -0.1727 (3) 0.5259 (3) 0.15584 (15) 0.0590 (7) H3 -0.2163 0.4283 0.1515 0.071* C4 -0.1537 (3) 0.5914 (3) 0.21766 (14) 0.0558 (7) H4 -0.1869 0.5388 0.2550 0.067* C5 -0.0863 (3) 0.7355 (3) 0.22468 (12) 0.0476 (6) H5 -0.0732 0.765 0.2667 0.057* C6 -0.0370 (3) 0.8143 (3) 0.16918 (11) 0.0408 (6) C8 0.1404 (3) 1.0279 (3) 0.12343 (12) 0.0411 (6) H8 0.0763 1.0392 0.0825 0.049* O2 0.2034 (2) 1.1730 (2) 0.14353 (9) 0.0576 (5) C9 0.1813 (3) 1.2918 (3) 0.1263* (18) 0.0838 (10) H10A 0.2424 1.5155 0.0976 0.126* H10B 0.3752 (3) 0.8005 (4) 0.16776 (13) 0.0665 (9)	H1	-0.0287	0.8022		0.0690		0.054	*	
H2-0.14130.56230.05830.065*C3-0.1727 (3)0.5259 (3)0.15584 (15)0.0590 (7)H3-0.21630.42830.15150.071*C4-0.1537 (3)0.5914 (3)0.21766 (14)0.0558 (7)H4-0.18690.53880.25500.067*C5-0.0863 (3)0.7355 (3)0.22468 (12)0.0476 (6)H5-0.07320.77650.26670.057*C6-0.0370 (3)0.8143 (3)0.16918 (11)0.0383 (6)C70.0381 (3)0.9666 (3)0.17954 (11)0.0408 (6)C80.1404 (3)1.0279 (3)0.12343 (12)0.0411 (6)H80.07631.03920.08250.049*O20.2034 (2)1.1730 (2)0.14353 (9)0.0576 (5)C90.1813 (3)1.2918 (3)0.10238 (14)0.0537 (7)C100.2675 (4)1.4304 (3)0.12031 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12B0.60960.85320.15200.076*H12B0.60960.85320.15200.076*C130.3130 (3)0.817 (3)-0.05149 (15)0.0638 (8)Atomic displacement parameters (Å ²) V^{11} V^{23} </td <td>C2</td> <td>-0.1267 (3)</td> <td>0.6056 (3)</td> <td></td> <td>0.10017</td> <td>(14)</td> <td>0.054</td> <td>5 (7)</td> <td></td>	C2	-0.1267 (3)	0.6056 (3)		0.10017	(14)	0.054	5 (7)	
C3 -0.1727 (3) 0.5259 (3) 0.15584 (15) 0.0590 (7) H3 -0.2163 0.4283 0.1515 0.071* C4 -0.1537 (3) 0.5914 (3) 0.21766 (14) 0.0558 (7) H4 -0.1869 0.5388 0.2250 0.067* C5 -0.0863 (3) 0.7335 (3) 0.22468 (12) 0.0476 (6) H5 -0.0732 0.7765 0.2667 0.057* C6 -0.0370 (3) 0.8143 (3) 0.16918 (11) 0.0383 (6) C7 0.0381 (3) 0.9666 (3) 0.17954 (11) 0.0408 (6) C8 0.1404 (3) 1.0279 (3) 0.12343 (12) 0.0411 (6) H8 0.0763 1.0392 0.0825 0.049* O2 0.2034 (2) 1.1730 (2) 0.1238 (14) 0.0537 (7) C10 0.2675 (4) 1.4304 (3) 0.12631 (18) 0.0838 (10) H10A 0.2424 1.5155 0.0976 0.126* H10B 0.3791 1.4114 0.1262 0.126* H11A 0.3194 0.8153 0.1983 0.080*	H2	-0.1413	0.5623		0.0583		0.065	*	
H3 -0.2163 0.4283 0.1515 $0.071*$ C4 -0.1537 (3) 0.5914 (3) 0.21766 (14) 0.0558 (7)H4 -0.1869 0.5388 0.2550 $0.067*$ C5 -0.0863 (3) 0.7335 (3) 0.22468 (12) 0.0476 (6)H5 -0.0732 0.7765 0.2667 $0.057*$ C6 -0.0370 (3) 0.8143 (3) 0.16918 (11) 0.0383 (6)C7 0.0381 (3) 0.9666 (3) 0.17954 (11) 0.0408 (6)C8 0.1404 (3) 1.0279 (3) 0.12343 (12) 0.0411 (6)H8 0.0763 1.0392 0.0825 $0.049*$ O2 0.2034 (2) 1.1730 (2) 0.14353 (9) 0.0576 (5)C9 0.1813 (3) 1.2918 (3) 0.10238 (14) 0.0537 (7)C10 0.2675 (4) 1.4304 (3) 0.12631 (18) 0.0838 (10)H10A 0.2424 1.5155 0.976 $0.126*$ H10B 0.3791 1.4114 0.1707 $0.126*$ C11 0.3752 (3) 0.8805 (4) 0.16776 (13) 0.0665 (9)H11B 0.4108 0.9713 0.1917 $0.080*$ C12 0.5133 (3) 0.7969 (4) 0.14161 (14) 0.0631 (8)H12A 0.5217 0.6964 0.1621 $0.076*$ H12B 0.6096 0.8532 0.1520 $0.076*$ C13 0.3130 (3) 0.8817 (3) -0.05949 (15) 0.638 (8)A^2) A^{23} <td>C3</td> <td>-0.1727 (3)</td> <td>0.5259 (3)</td> <td></td> <td>0.15584</td> <td>(15)</td> <td>0.059</td> <td>0 (7)</td> <td></td>	C3	-0.1727 (3)	0.5259 (3)		0.15584	(15)	0.059	0 (7)	
C4 $-0.1537 (3)$ $0.5914 (3)$ $0.21766 (14)$ $0.0558 (7)$ H4 -0.1869 0.5388 0.2550 0.067^* C5 $-0.0863 (3)$ $0.7335 (3)$ $0.22468 (12)$ $0.0476 (6)$ H5 -0.0732 0.7765 0.2667 0.057^* C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.9666 (3)$ $0.17954 (11)$ $0.0408 (6)$ C8 $0.1404 (3)$ $1.0279 (3)$ $0.12343 (12)$ $0.0411 (6)$ H8 0.0763 1.0392 0.0825 0.049^* O2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.576 (5)$ C9 $0.1813 (3)$ $1.2918 (3)$ $0.10238 (14)$ $0.0537 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.12631 (18)$ $0.0838 (10)$ H10A 0.2424 1.5155 0.0976 0.126^* H10B 0.3791 1.4114 0.1262 0.126^* C11 $0.3752 (3)$ $0.8805 (4)$ $0.16776 (13)$ $0.0665 (9)$ H11A 0.3194 0.8153 0.1983 0.080^* C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.6631 (8)$ H12B 0.6096 0.8532 0.1520 0.076^* H12B 0.6096 0.8532 0.1520 0.076^* C13 $0.3130 (3)$ $0.8817 (3)$ $0.05162 (12)$ $0.0409 (6)$ C14 $0.2788 (4)$ $0.8745 (3)$ $-0.05949 (15)$ $0.6638 (8)$	Н3	-0.2163	0.4283		0.1515		0.071	*	
H4 -0.1869 0.5388 0.2550 0.067^* C5 $-0.0863 (3)$ $0.7335 (3)$ $0.22468 (12)$ $0.0476 (6)$ H5 -0.0732 0.7765 0.2667 0.057^* C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.9666 (3)$ $0.17954 (11)$ $0.0408 (6)$ C8 $0.1404 (3)$ $1.0279 (3)$ $0.12343 (12)$ $0.0411 (6)$ H8 0.0763 1.0392 0.0825 0.049^* O2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.576 (5)$ C9 $0.1813 (3)$ $1.2918 (3)$ $0.10238 (14)$ $0.537 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.12631 (18)$ $0.0838 (10)$ H10A 0.2424 1.5155 0.0976 0.126^* H10B 0.3791 1.4114 0.1262 0.126^* H10C 0.2367 1.4541 0.1707 0.126^* H11A 0.3194 0.8153 0.1983 0.080^* H11B 0.4108 0.9713 0.1917 0.808^* C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.6631 (8)$ H12A 0.5217 0.6964 0.1621 0.076^* H12B 0.6096 0.8532 0.1520 0.076^* C13 $0.3130 (3)$ $0.8817 (3)$ $-0.05949 (15)$ $0.6638 (8)$ Lamint displacement parameters (A^2) V^{11} V^{22}	C4	-0.1537 (3)	0.5914 (3)		0.21766	(14)	0.055	8 (7)	
C5 $-0.0863 (3)$ $0.7335 (3)$ $0.22468 (12)$ $0.0476 (6)$ H5 -0.0732 0.7765 0.2667 $0.057*$ C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.9666 (3)$ $0.17954 (11)$ $0.0408 (6)$ C8 $0.1404 (3)$ $1.0279 (3)$ $0.12343 (12)$ $0.0411 (6)$ H8 0.0763 1.0392 0.0825 $0.049*$ O2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.0576 (5)$ C9 $0.1813 (3)$ $1.2918 (3)$ $0.10238 (14)$ $0.0537 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.12631 (18)$ $0.0838 (10)$ H10A 0.2424 1.5155 0.0976 $0.126*$ H10B 0.3791 1.4114 0.1262 $0.126*$ H10C 0.2367 1.4541 0.1707 $0.126*$ C11 $0.3752 (3)$ $0.8805 (4)$ $0.16776 (13)$ $0.0665 (9)$ H11A 0.3194 0.8153 0.1983 $0.080*$ H12B 0.6096 0.8532 0.1520 $0.076*$ C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.0631 (8)$ H12B 0.6096 0.8532 0.1520 $0.076*$ C13 $0.3130 (3)$ $0.8173 (3)$ $-0.05949 (15)$ $0.0638 (8)$ Atomic displacement parameters (A^2) U ¹¹ U^{22} U^{33} U^{12} U^{13} U^{23}	H4	-0.1869	0.5388		0.2550		0.067	*	
H5 -0.0732 0.7765 0.2667 $0.057*$ C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.9666 (3)$ $0.17954 (11)$ $0.0408 (6)$ C8 $0.1404 (3)$ $1.0279 (3)$ $0.12343 (12)$ $0.0411 (6)$ H8 0.0763 1.0392 0.0825 $0.049*$ O2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.0576 (5)$ C9 $0.1813 (3)$ $1.2918 (3)$ $0.10238 (14)$ $0.0537 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.12631 (18)$ $0.0838 (10)$ H10A 0.2424 1.5155 0.0976 $0.126*$ H10B 0.3791 1.4114 0.1262 $0.126*$ C11 $0.3752 (3)$ $0.8805 (4)$ $0.16776 (13)$ $0.0665 (9)$ H11A 0.3194 0.8153 0.1983 $0.808*$ C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.0631 (8)$ H12B 0.6096 0.8532 0.1520 $0.76*$ C13 $0.3130 (3)$ $0.8817 (3)$ $-0.05949 (15)$ $0.0638 (8)$ \hat{A}^2) U^{13} U^{23}	C5	-0.0863 (3)	0.7335 (3)		0.22468	(12)	0.047	6 (6)	
C6 $-0.0370 (3)$ $0.8143 (3)$ $0.16918 (11)$ $0.0383 (6)$ C7 $0.0381 (3)$ $0.9666 (3)$ $0.17954 (11)$ $0.0408 (6)$ C8 $0.1404 (3)$ $1.0279 (3)$ $0.12343 (12)$ $0.0411 (6)$ H8 0.0763 1.0392 0.0825 $0.049*$ O2 $0.2034 (2)$ $1.1730 (2)$ $0.14353 (9)$ $0.0576 (5)$ C9 $0.1813 (3)$ $1.2918 (3)$ $0.10238 (14)$ $0.0537 (7)$ C10 $0.2675 (4)$ $1.4304 (3)$ $0.12631 (18)$ $0.0838 (10)$ H10A 0.2424 1.5155 0.0976 $0.126*$ H10B 0.3791 1.4114 0.1262 $0.126*$ H10C 0.2367 1.4541 0.1707 $0.126*$ C11 $0.3752 (3)$ $0.8805 (4)$ $0.16776 (13)$ $0.0665 (9)$ H11A 0.3194 0.8153 0.1983 $0.080*$ C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.0631 (8)$ H11B 0.4108 0.9713 $0.1520 (12)$ $0.0409 (6)$	Н5	-0.0732	0.7765		0.2667		0.057	*	
C70.0381 (3)0.9666 (3)0.17954 (11)0.0408 (6)C80.1404 (3)1.0279 (3)0.12343 (12)0.0411 (6)H80.07631.03920.08250.049*O20.2034 (2)1.1730 (2)0.14353 (9)0.0576 (5)C90.1813 (3)1.2918 (3)0.10238 (14)0.0537 (7)C100.2675 (4)1.4304 (3)0.12631 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.37911.41140.12620.126*H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.16210.076*H12B0.60960.85320.15200.076*H12B0.60960.85320.151200.0409 (6)C130.3130 (3)0.8817 (3)-0.05949 (15)0.0638 (8)Atomic displacement parameters $(Å^2)$ V^{11} V^{22} V^{23}	C6	-0.0370 (3)	0.8143 (3)		0.16918	(11)	0.038	3 (6)	
C8 0.1404 (3) 1.0279 (3) 0.12343 (12) 0.0411 (6) H8 0.0763 1.0392 0.0825 0.049* O2 0.2034 (2) 1.1730 (2) 0.14353 (9) 0.0576 (5) C9 0.1813 (3) 1.2918 (3) 0.10238 (14) 0.0537 (7) C10 0.2675 (4) 1.4304 (3) 0.12631 (18) 0.0838 (10) H10A 0.2424 1.5155 0.0976 0.126* H10B 0.3791 1.4114 0.1262 0.126* C11 0.3752 (3) 0.8805 (4) 0.16776 (13) 0.0665 (9) H11A 0.3194 0.8153 0.1983 0.080* C12 0.5133 (3) 0.7969 (4) 0.14161 (14) 0.0631 (8) H12A 0.5217 0.6964 0.1621 0.076* H12B 0.6096 0.8532 0.1520 0.076* C13 0.3130 (3) 0.8817 (3) 0.05162 (12) 0.0409 (6) C14 0.2788 (4) 0.8745 (3) -0.05949 (15) 0.0638 (8)	C7	0.0381 (3)	0.9666 (3)		0.17954	(11)	0.040	8 (6)	
H80.07631.03920.08250.049*O20.2034 (2)1.1730 (2)0.14353 (9)0.0576 (5)C90.1813 (3)1.2918 (3)0.10238 (14)0.0537 (7)C100.2675 (4)1.4304 (3)0.12631 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.37911.41140.12620.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12A0.52170.69640.16210.076*H12B0.60960.85320.15200.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.638 (8)	C8	0.1404 (3)	1.0279 (3)		0.12343	(12)	0.041	1 (6)	
O20.2034 (2)1.1730 (2)0.14353 (9)0.0576 (5)C90.1813 (3)1.2918 (3)0.10238 (14)0.0537 (7)C100.2675 (4)1.4304 (3)0.12631 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.37911.41140.12620.126*H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12B0.60960.85320.15200.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.0638 (8)	H8	0.0763	1.0392		0.0825		0.049	*	
C90.1813 (3)1.2918 (3)0.10238 (14)0.0537 (7)C100.2675 (4)1.4304 (3)0.12631 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.37911.41140.12620.126*H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12A0.52170.69640.16210.076*H12B0.60960.85320.15200.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.0638 (8)	02	0.2034 (2)	1.1730 (2)		0.14353	(9)	0.057	6 (5)	
C100.2675 (4)1.4304 (3)0.12631 (18)0.0838 (10)H10A0.24241.51550.09760.126*H10B0.37911.41140.12620.126*H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12A0.52170.69640.16210.076*H12B0.60960.85320.15200.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.0638 (8)	C9	0.1813 (3)	1.2918 (3)		0.10238	(14)	0.053	7 (7)	
H10A0.24241.51550.09760.126*H10B0.37911.41140.12620.126*H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12A0.52170.69640.16210.076*H12B0.60960.85320.15200.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.0638 (8)	C10	0.2675 (4)	1.4304 (3)		0.12631	(18)	0.083	8 (10)	
H10B0.37911.41140.12620.126*H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12A0.52170.69640.16210.076*H12B0.60960.85320.15200.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.0638 (8)	H10A	0.2424	1.5155		0.0976		0.126	*	
H10C0.23671.45410.17070.126*C110.3752 (3)0.8805 (4)0.16776 (13)0.0665 (9)H11A0.31940.81530.19830.080*H11B0.41080.97130.19170.080*C120.5133 (3)0.7969 (4)0.14161 (14)0.0631 (8)H12A0.52170.69640.16210.076*C130.3130 (3)0.8817 (3)0.05162 (12)0.0409 (6)C140.2788 (4)0.8745 (3)-0.05949 (15)0.0638 (8)	H10B	0.3791	1.4114		0.1262		0.126	*	
C11 $0.3752 (3)$ $0.8805 (4)$ $0.16776 (13)$ $0.0665 (9)$ H11A 0.3194 0.8153 0.1983 $0.080*$ H11B 0.4108 0.9713 0.1917 $0.080*$ C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.0631 (8)$ H12A 0.5217 0.6964 0.1621 $0.076*$ H12B 0.6096 0.8532 0.1520 $0.076*$ C13 $0.3130 (3)$ $0.8817 (3)$ $0.05162 (12)$ $0.0409 (6)$ C14 $0.2788 (4)$ $0.8745 (3)$ $-0.05949 (15)$ $0.0638 (8)$	H10C	0.2367	1.4541		0.1707		0.126	*	
H11A 0.3194 0.8153 0.1983 0.080^* H11B 0.4108 0.9713 0.1917 0.080^* C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.0631 (8)$ H12A 0.5217 0.6964 0.1621 0.076^* H12B 0.6096 0.8532 0.1520 0.076^* C13 $0.3130 (3)$ $0.8817 (3)$ $0.05162 (12)$ $0.0409 (6)$ C14 $0.2788 (4)$ $0.8745 (3)$ $-0.05949 (15)$ $0.0638 (8)$	C11	0.3752 (3)	0.8805 (4)		0.16776	(13)	0.066	5 (9)	
H11B 0.4108 0.9713 0.1917 0.080^* C12 $0.5133 (3)$ $0.7969 (4)$ $0.14161 (14)$ $0.0631 (8)$ H12A 0.5217 0.6964 0.1621 0.076^* H12B 0.6096 0.8532 0.1520 0.076^* C13 $0.3130 (3)$ $0.8817 (3)$ $0.05162 (12)$ $0.0409 (6)$ C14 $0.2788 (4)$ $0.8745 (3)$ $-0.05949 (15)$ $0.0638 (8)$	H11A	0.3194	0.8153		0.1983		0.080	*	
C12 0.5133 (3) 0.7969 (4) 0.14161 (14) 0.0631 (8) H12A 0.5217 0.6964 0.1621 0.076* H12B 0.6096 0.8532 0.1520 0.076* C13 0.3130 (3) 0.8817 (3) 0.05162 (12) 0.0409 (6) C14 0.2788 (4) 0.8745 (3) -0.05949 (15) 0.0638 (8)	H11B	0.4108	0.9713		0.1917		0.080	*	
H12A 0.5217 0.6964 0.1621 $0.076*$ H12B 0.6096 0.8532 0.1520 $0.076*$ C13 $0.3130 (3)$ $0.8817 (3)$ $0.05162 (12)$ $0.0409 (6)$ C14 $0.2788 (4)$ $0.8745 (3)$ $-0.05949 (15)$ $0.0638 (8)$ Atomic displacement parameters ($Å^2$) U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}	C12	0.5133 (3)	0.7969 (4)		0.14161	(14)	0.063	1 (8)	
H12B 0.6096 0.8532 0.1520 0.076* C13 0.3130 (3) 0.8817 (3) 0.05162 (12) 0.0409 (6) C14 0.2788 (4) 0.8745 (3) $-0.05949 (15)$ 0.0638 (8) Atomic displacement parameters (Å ²) U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}	H12A	0.5217	0.6964		0.1621		0.076	*	
C13 0.3130 (3) 0.8817 (3) 0.05162 (12) 0.0409 (6) C14 0.2788 (4) 0.8745 (3) -0.05949 (15) 0.0638 (8) Atomic displacement parameters ($Å^2$) U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}	H12B	0.6096	0.8532		0.1520		0.076	*	
C14 0.2788 (4) 0.8745 (3) -0.05949 (15) 0.0638 (8) Atomic displacement parameters $(Å^2)$ U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}	C13	0.3130 (3)	0.8817 (3)		0.05162	(12)	0.040	9 (6)	
Atomic displacement parameters (\AA^2) U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}	C14	0.2788 (4)	0.8745 (3)		-0.0594	9 (15)	0.063	8 (8)	
U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}	Atomic displaceme	ent parameters (Å	²)						
	1	- ₁ 11	, 1 ²²	U^{33}		U^{12}		U^{13}	U^{23}
S_1 0.0543 (4) 0.0690 (5) 0.0636 (5) 0.0039 (4) 0.0152 (3) -0.0048 (4)	S1 (0543 (4)) 0690 (5)	0.0636.0	5)	0 0039 (4)		0.0152 (3)	-0.0048(4)
O1 0.0687 (13) 0.0744 (14) 0.0521 (11) -0.0061 (10) 0.0119 (9) -0.0255 (10)	01 ().0687 (13)).0744 (14)	0.0521 (11)	-0.0061 (1)	0)	0.0119 (9)	-0.0255(10)

O3

N1

0.199 (3)

0.0361 (10)

0.0569 (14)

0.0495 (13)

0.0711 (16)

0.0335 (11)

-0.0233 (17)

-0.0032 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.0135 (12)

0.0027 (9)

-0.0545(18)

0.0015 (8)

supplementary materials

N2	0.0626 (14)	0.0613 (15)	0.0329 (12)	-0.0084 (11)	0.0015 (10)	-0.0033 (10)
N3	0.151 (3)	0.094 (2)	0.0454 (16)	-0.030 (2)	0.0220 (17)	-0.0161 (15)
C1	0.0454 (14)	0.0501 (16)	0.0398 (14)	-0.0043 (12)	0.0062 (11)	0.0022 (11)
C2	0.0575 (17)	0.0517 (17)	0.0543 (16)	-0.0074 (14)	0.0049 (13)	-0.0062 (13)
C3	0.0544 (17)	0.0488 (17)	0.074 (2)	-0.0090 (13)	0.0055 (14)	0.0084 (15)
C4	0.0463 (15)	0.0654 (19)	0.0559 (18)	-0.0030 (14)	0.0057 (13)	0.0208 (14)
C5	0.0379 (13)	0.0680 (18)	0.0372 (13)	0.0017 (13)	0.0044 (10)	0.0049 (12)
C6	0.0303 (11)	0.0488 (15)	0.0359 (13)	0.0020 (11)	0.0022 (10)	0.0015 (11)
C7	0.0377 (13)	0.0492 (15)	0.0354 (13)	0.0044 (11)	-0.0008 (10)	-0.0028 (12)
C8	0.0453 (14)	0.0374 (14)	0.0401 (13)	-0.0044 (11)	-0.0068 (11)	-0.0006 (11)
O2	0.0730 (12)	0.0415 (11)	0.0570 (12)	-0.0124 (9)	-0.0203 (9)	0.0054 (9)
C9	0.0671 (18)	0.0477 (17)	0.0462 (16)	-0.0078 (14)	0.0018 (13)	0.0003 (13)
C10	0.098 (3)	0.0502 (19)	0.102 (3)	-0.0221 (18)	-0.015 (2)	0.0055 (18)
C11	0.0541 (17)	0.098 (2)	0.0466 (16)	0.0191 (16)	-0.0078 (13)	-0.0024 (16)
C12	0.0464 (16)	0.078 (2)	0.0654 (19)	0.0064 (15)	0.0018 (13)	0.0114 (16)
C13	0.0435 (13)	0.0403 (14)	0.0391 (14)	-0.0138 (11)	0.0066 (11)	0.0010 (11)
C14	0.085 (2)	0.0584 (19)	0.0480 (18)	-0.0203 (16)	0.0042 (15)	-0.0025 (14)

Geometric parameters (Å, °)

S1—C13	1.738 (3)	C4—H4	0.9300
S1—C12	1.796 (3)	C5—C6	1.395 (3)
O1—C7	1.210 (3)	С5—Н5	0.9300
O3—C9	1.179 (3)	C6—C7	1.484 (3)
N1—C13	1.346 (3)	С7—С8	1.538 (3)
N1—C8	1.439 (3)	C8—O2	1.427 (3)
N1—C11	1.456 (3)	C8—H8	0.9800
N2—C13	1.301 (3)	O2—C9	1.336 (3)
N2—C14	1.328 (3)	C9—C10	1.485 (4)
N3—C14	1.149 (4)	C10—H10A	0.9600
C1—C2	1.378 (4)	C10—H10B	0.9600
C1—C6	1.392 (3)	C10—H10C	0.9600
C1—H1	0.9300	C11—C12	1.487 (4)
C2—C3	1.384 (4)	C11—H11A	0.9700
С2—Н2	0.9300	C11—H11B	0.9700
C3—C4	1.376 (4)	C12—H12A	0.9700
С3—Н3	0.9300	C12—H12B	0.9700
C4—C5	1.369 (4)		
C13—S1—C12	92.71 (12)	О2—С8—Н8	110.1
C13—N1—C8	122.5 (2)	N1—C8—H8	110.1
C13—N1—C11	116.6 (2)	С7—С8—Н8	110.1
C8—N1—C11	120.26 (19)	С9—О2—С8	117.73 (19)
C13—N2—C14	117.7 (2)	O3—C9—O2	122.4 (3)
C2—C1—C6	120.1 (2)	O3—C9—C10	125.9 (3)
C2—C1—H1	120.0	O2—C9—C10	111.7 (2)
C6—C1—H1	120.0	C9—C10—H10A	109.5
C1—C2—C3	120.3 (3)	С9—С10—Н10В	109.5
C1—C2—H2	119.9	H10A—C10—H10B	109.5
С3—С2—Н2	119.9	С9—С10—Н10С	109.5

C4—C3—C2	119.8 (3)	H10A—C10—H10C	109.5
С4—С3—Н3	120.1	H10B-C10-H10C	109.5
С2—С3—Н3	120.1	N1—C11—C12	109.3 (2)
C5—C4—C3	120.5 (2)	N1—C11—H11A	109.8
С5—С4—Н4	119.8	C12—C11—H11A	109.8
C3—C4—H4	119.8	N1—C11—H11B	109.8
C4—C5—C6	120.4 (2)	C12—C11—H11B	109.8
С4—С5—Н5	119.8	H11A—C11—H11B	108.3
С6—С5—Н5	119.8	C11—C12—S1	108.89 (19)
C1—C6—C5	119.0 (2)	C11—C12—H12A	109.9
C1—C6—C7	122.7 (2)	S1—C12—H12A	109.9
C5—C6—C7	118.4 (2)	C11—C12—H12B	109.9
O1—C7—C6	122.7 (2)	S1—C12—H12B	109.9
O1—C7—C8	120.2 (2)	H12A—C12—H12B	108.3
C6—C7—C8	117.1 (2)	N2—C13—N1	120.9 (2)
O2—C8—N1	108.44 (19)	N2—C13—S1	126.66 (19)
O2—C8—C7	108.22 (19)	N1—C13—S1	112.39 (18)
N1—C8—C7	109.86 (19)	N3—C14—N2	174.3 (4)
C6—C1—C2—C3	0.1 (4)	O1—C7—C8—N1	115.7 (2)
C1—C2—C3—C4	1.2 (4)	C6—C7—C8—N1	-60.7 (3)
C2—C3—C4—C5	-1.5 (4)	N1—C8—O2—C9	113.8 (2)
C3—C4—C5—C6	0.5 (4)	C7—C8—O2—C9	-127.1 (2)
C2—C1—C6—C5	-1.1 (4)	C8—O2—C9—O3	7.7 (4)
C2—C1—C6—C7	178.6 (2)	C8—O2—C9—C10	-173.9 (2)
C4—C5—C6—C1	0.8 (3)	C13—N1—C11—C12	1.0 (4)
C4—C5—C6—C7	-178.9 (2)	C8—N1—C11—C12	-170.1 (2)
C1—C6—C7—O1	163.7 (2)	N1-C11-C12-S1	-2.8 (3)
C5—C6—C7—O1	-16.7 (3)	C13—S1—C12—C11	3.1 (2)
C1—C6—C7—C8	-20.0 (3)	C14—N2—C13—N1	178.2 (2)
C5—C6—C7—C8	159.7 (2)	C14—N2—C13—S1	-2.7 (3)
C13—N1—C8—O2	-106.5 (2)	C8—N1—C13—N2	-8.6 (3)
C11—N1—C8—O2	64.1 (3)	C11—N1—C13—N2	-179.5 (2)
C13—N1—C8—C7	135.4 (2)	C8—N1—C13—S1	172.23 (17)
C11—N1—C8—C7	-54.0 (3)	C11—N1—C13—S1	1.4 (3)
O1—C7—C8—O2	-2.5 (3)	C12—S1—C13—N2	178.3 (2)
C6—C7—C8—O2	-178.97 (18)	C12—S1—C13—N1	-2.61 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С8—Н8…ОЗ	0.98	2.22	2.649 (4)	105
C8—H8…N2	0.98	2.38	2.796 (3)	105

